일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- ISLR
- R mutate
- CrossValidation
- 강화학습 #추천서적 #강화학습인액션
- R select
- 데이터 핸들링
- 생존그래프
- R 결측치
- R dplyr
- 데이터핸들링
- R문법
- geom_errorbar
- ggsurvplot
- 주식데이터시각화
- R ggplot2
- 확률실험
- ggplot2
- R filter
- 미국 선거데이터
- 생존분석
- 교차타당성
- 이산형 확률분포
- dplyr
- 의사결정나무
- ggplot()
- R 연습문제
- 카플란마이어
- Bias-Variance Tradeoff
- 콕스비례모형
- R
- Today
- Total
Must Learning With Statistics
표본공간과 확률변수 본문
확률실험과 표본공간
-
확률 실험 : 같은 조건 하에서 실험을 반복할 때, 그 결과가 예측불가능한 실험
-
표본 공간 : 확률 실험의 모든 가능한 결과들의 집합
통계 이론을 공부할 때 가장 먼저 알아야 될 용어는 확률실험입니다. 확률실험은 쉽게는 주사위 던지기부터 시작하여, 오늘 지각을 할지 안할지 실험하는 것 까지 모든 일상생활을 확률실험이라고 할 수 있습니다. 여기서 확률실험의 모든 가능한 결과들의 집합을 표본공간(Sample Sapce)이라고 합니다. 예를 들어, 동전을 던져 앞, 뒷면이 나오는지 확인하는 확률실험을 진행하였을 경우, 표본공간은 {앞, 뒤}가 됩니다.
확률변수(Random Variable)
-
확률변수 : 발생 가능한 모든 경우에 대해서 각각의 실숫값을 대입해주는 하나의 함수
다음으로는 통계학에서 가장 중요하다고 할 수 있는 확률변수(Random Variable)가 등장합니다. 표본공간의 각 원소 하나하나에 원하는 목적에 따라 그에 걸맞은 실수를 대입해 주는 함수입니다. 여기서 확률변수는 변수의 척도(이산형, 연속형)에 따라 2가지로 나뉩니다.
-
이산형 확률변수(Discrete Random Variable) : 어떤 값을 가질 확률을 계산하는 확률변수
-
연속형 확률변수(Conituous Random Variable) : 어떤 구간 내에 포함될 확률을 계산하는 확률변수
예시1) 성별
어떤 팀에서 한 명을 리더로 선출하려고 하는데 성별에 관심이 있습니다. 이 경우 표본공간은 (남자,여자) 두 가지로 이루어진 집합이 될 것입니다. 이때 확률변수 $X$를 '여자는 0 남자는 1' 이라고 정의해 봅시다. 반대로 해도 상관 없습니다. 그렇다면 리더가 선출되었을 때 0또는 1이라는 확률변수 값을 얻을 수 있을 것입니다. 이는 (남자, 여자)라는 표본공간에서 각 원소들을 0과 1이라는 실수로 전화해주는 변환 함수 입니다.
예시2) 주사위
눈이 3까지 있는 주사위 두 개를 굴리는 상황입니다. 확률변수 $Y$를 '두 주사위 눈의 합'이라고 정의해 봅시다. 변수 $Y$라고 하면 나올 수 있는 경우는 다음과 같습니다.
가능한 경우는 총 9가지입니다. 이는 표본공간이 9개의 원소를 가지고 있는 집합이라는 뜻이고 '두 눈의 합' 이라는 함수인 확률변수는 총 5개의 값을 갖게 됩니다. 위 표에서 보면 표본공간은 왼쪽 부분이 되겠고 확률변수가 가질 수 있는 실수는 오른쪽이겠지요. 이렇게 표본공간에서 실수로 변환해주는 변환 함수가 확률변수입니다. 또한 확률변수의 특징은 각 경우가 나올 확률이 알려져 있다는 것입니다.
주의해야 할 점은 확률변수는 그 자체로도 함수라는 사실입니다. 흔히 많은 분들이 확률변수와 확률함수를 헷갈리시는데, 확률변수는 표본공간에서 실수로 가는 함수이고 확률함수는 확률변수가 어떤 값을 가질 때(혹은 어떤 범위 내에 포함될 때)의 확률을 계산하는 함수입니다. 위 표에서는 세 번째 열이 확률함수 값이라고 할 수 있습니다.
'통계 이론' 카테고리의 다른 글
연속형 확률분포 (0) | 2020.03.22 |
---|---|
포아송분포 (Poisson Distribution) (0) | 2020.03.22 |
다항분포(Multinomial Distribution) (0) | 2020.03.22 |
이항분포(Binomial Distribution) (0) | 2020.03.22 |
이산형 확률분포 (0) | 2020.03.22 |